


The following tables contain information on measured current consumption as well as calculated heat dissipation during what we see as the most extreme sustained normal operation (1/8 rated power).

LUCIA 60/2										
Level	Load	oad Output power		Mains voltage	Line current	Watt *1)			Thermal Dissipation	
				VAC	IAC	In	Out	Dissipated	BTU/hr	kCal/hr
Standby w. remote Power Off.				230	0.03	1	0	1	3	1
				120	0.03	1	0	1	3	1
				100	0.03	1	0	1	3	1
Power on, Idling				230	0.1	12	0	12	41	10
				120	0.2	13	0	13	44	11
				100	0.2	13	0	13	45	11
Pink Pseudo Noise (1/8)		15	x 2	230	0.2	19	4	15	51	13
	16 Ω / Ch.			120	0.3	19	4	15	51	13
				100	0.3	19	4	15	51	13
		30	x 2	230	0.2	24	8	16	55	14
	8 Ω / Ch.			120	0.3	23	8	16	54	14
				100	0.4	24	8	16	55	14
		30	x 2	230	0.2	24	8	17	57	14
	4 Ω / Ch.			120	0.3	24	8	16	56	14
				100	0.4	24	8	17	57	14
		30	x 2	230	0.2	25	8	17	59	15
	2 Ω / Ch.			120	0.3	25	8	17	58	15
				100	0.4	25	8	17	59	15

^{*1)} The amplifier's PSU operates as a non-resistive load, so the calculation "Volts x Amps = Watts" would not be correct. Instead, measured and specified here is what is known as the "Active Power" in the amplifier providing useful, real-world values of power consumption and heat dissipation.

